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Dark and bright solitons in resonantly absorbing gratings
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We consider an optical medium consisting of a periodic refractive-index grating and a periodic set of thin
layers of two-level systems resonantly interacting with the electromagnetic field. Recently, it has been shown
that such a system gives rise to a vast variety of stable bright solitons. In this work, we demonstrate that the
system has another very unusual property: stable bright solitons can coexist with stable continuo(cmvave
states and stable dark solitofBS’s). Depending on the parameters’ values, a DS frequency band coexists
(without overlap with one or two bright-soliton bands. Quiescéstanding DS’s are found in an analytical
form, and moving ones are obtained numerically. Simulations show that a considerable part of the DS solutions
are completely stable against arbitrary small perturbations. The fact that this system supports both stable bright
and dark solitons for thesameparameters values may find interesting applications in photonics.
[S1063-651%99)13311-1

PACS numbes): 42.65.Tg, 42.25.Bs, 42.50.Gy, 78.6&v

[. INTRODUCTION A principal problem is thenodulational instabilityof the cw
fields, i.e., the lack of a stable background to support DS’s.
An intriguing optical property of one-dimensionally peri- The main innovation of the present work is that it demon-
odic dielectric media is the existence of solitary waves instrates an unexpected property of a RABR with active layers:
their band gaps known as “gap solitons.” These self-alongside the previously studied stable bright-soliton solu-
localized field structures arise due to the interplay betwee#ions[4,5], this system gives rise to a family of DS'’s, a large
the medium nonlinearity and its Bragg reflections. Theirpart of which arestable While the existence of stable bright-
spectrum is tuned away from the Bragg resonance by théO"tOn solutions along withunstable dark solitons is a
nonlinearity at sufficiently high field intensities. Theoretical known feature of uniform SHG medid], the RABR with
studies of gap solitons in Bragg gratings with Kerr nonlin- thin active layers provides, to the best of our knowledge, the
earity [1] have been followed up by their experimental ob- first example of a nonlinear optical medium in which stable
servation in a nonlinear optical fiber with the grating written bright and dark solitons exist for theame valuef the
on it[2]. Gap solitons have also been theoretically studied ifnodel’s parameteréat different frequencigs We believe it

gratings with second harmonic generati@HG) [3]. is also the first example of the existence of stable bright
A principally different mechanism of gap solitons has solitons alongsidstablecw (background solutions.
been revealed in a periodic array of thin layersregonant The rest of this paper is organized as follows. In Sec. II

two-level system@LS’s) separated by half-wavelength non- We _introduce_ the model,_ and analyze the spectrum qf its lin-
absorbing dielectric layers, i.e., gesonantly absorbing €arized version. Properties of the standiggiescentbright
Bragg reflector (RABR) [4,5]. Such a RABR has been solitons are discussed in Sec. lll. Exact solutions represent-
shown, forany Bragg reflectivity, to have, a vast family of ing quiescent DS’s are obtained in Sec. IV. Section V is
stable solitons, both standing and movirgs]. As opposed devoted to the crucial issue of the stability of DS’s. First, we
to the 2 solitons arising in self induced transparency, i.e.,analytically consider the stability of the cw solutions, and
resonant field — TLS interaction in a uniform mediusi, then, by means of numerical simulations, we test the full
gap solitons in a RABR can have ambitrary pulse area stability of DS’s. In Sec. VI, we find moving DS’s by means
[4,5]. As shown below, gap soliton solutions can only beOf direct simulations, and conclude that they are drastically
consistently demonstrated in a RABR within active TLS  different from the moving DS’s in the nonlinear Sctiger
layers. By contrast, a recent atteniigi to obtain such solu- equation. Effects of the finite width of the active layers are
tions in a periodic structureniformly filled with active  estimated in Sec. VII, experimental predictions of the work

TLS's is physically unfounded, and fails for many parameterare discussed in Sec. VIII, and the conclusions are summa-

values. rized in Sec. IX. In Appendixes A—F, derivations of the gov-
A gap soliton is usually understood to be a moving orérning equations and of other important formulas are pre-

standing(quiescent bright confined region, where light can sented.

freely propagate, in a dark background, where light is Bragg

reflected. Along with these bright solitons, there is consider- Il. MODEL AND ITS LINEAR SPECTRUM

able physical interest in dark solitofi8S’s), i.e., “holes” of

a fixed shape in a continuous-wafev) background field of

constant intensity8]. However, no example of a stable DS  As in Refs.[4] and[5], we assume a one-dimensionally

has thus far been known in any periodic nonlinear mediumperiodic modulation of the linear refractive indekz) along

A. Equations of motion
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0o being the TLS densityaveraged over). As derived in

Appendixes A, B, and C, the Maxwell-Bloch equations in
the slowly-varying-amplitude and rotating-wave approxima-
tions yield the following set of governing equations for this

system:
2> L Y 5 _ P
P e i 2++2I7]P+2a7_, (5)
z D Y , P
. - . 2 2 :_772*_2(9_' ©
FIG. 1. Schematic description of the periodic structure and de- Jr Z4 ¢
composition of the electric field into mod&s, and> _ . The shad-
ing represents regions with different index of refraction; the darker JP .
the shading the largeris. The black regions correspond to the TLS or =—ioP+X,w, Y
layers. The upper solid curve represents the electric field, the lower
solid curves correspond to the components 3Re(cosk.z and IW
—Im(2 _)sink.z, and the dashed curves are the envelopeS RE( —=—RegX  P*), (8
and—Im(X ). The vertical dotted lines denote the positions of the a7
TLS.

whereP is the dimensionless slow-varying polarization nor-
malized as|P|<1, andw is the TLS population inversion
ranging between—1 and +1. Here, we have neglected
Sosses and the finite width of the active layers, which are
20\ — 2 analyzed in Sec. VII and Appendixes D and E. The dimen-
n“(z)=ng[1+a,cog2k.z) +a,cog4dk.z)+---1, (1 . . . . )
(@)=ndl 1008 2Ke2) +3,C084kc2) L@ sionless timer, coordinate/, and detunings are defined as

the z direction of the electromagnetic wave propagatisee
Fig. 1). The modulation can be written as the Fourier serie

wheren,, a;, andk. are constants. For the propagation of follows:

waves whose wave vector is closekig only the coefficient r=tlty, (=(NglCT)X, O=(wo—we)Ty. (9)

a, is essentialsee Appendix B The medium is assumed to

be infinite and homogeneous in tkeandy directions. The The dimensionless modulation strengjtin Egs.(5) and(6)
periodic grating gives rise to band gaps in the system’s lineais the ratio of the TLS absorption distance to the Bragg re-
spectrum, i.e., the medium is totally reflective for wavesflection distance, which can be expressed as
whose frequency is inside the gaps. The central frequency of

the fundamental gap im.=k.c/ng, ¢ being the vacuum 07

speed of light, and the gap edges are located at the frequen- =Ty

cies

(10

Note that>, _ does not influence the evolution &f, , P and
w1 = w(1+a/4), (2) w, but is driven bydP/d{.
Combining Eqgs(7) and (8), one can eliminate the TLS
wherea;, is the modulation depth from Eql). We further ~ population inversion:
assume thavery thin TLS layers(much thinner than ki),
whose resonance frequeney is close to the gap center;, w=+\1-|P|%, (11

are placed at the maxima of the modulated refraction index.

In other words, the thin active layers are placed at the point¥!/Ithout the field-induced polarization, the TLS population is
Ziayer SUCh that cO%(Zaye) =+ 1. As discussed in Sec. VIII, not inverted v=—1), hen_cg the IOWt_ar sign must be chosen
guantum wells embedded in Bragg mirrors are adequatel Eq.(11). Thus the remaining equations fBr. andP form
described as TLS layers. closed system

We shall study the propagation of the electromagnetic 2 2
waves with frequencies close . through the described t_ F 025 4 2i(n—8)P—21— P2
medium. The electric field(z,t) will be decomposed into 972 g¢2 7+ 2(n=0) IPI*=
cosine and sine spatial components, having dimensionless (12

slowly varying amplitude€ , andX _, respectively,

JP )
E(zt)=h(uro) “RES ()6 *d]coskz 37 = 1OPTVITIPIE, 13
—Im[3_(z,t)e”"<"]sink2), (3 and3_, the field component driven byP/a¢, can then be

_ N _ found from Eq.(6).
Where,u is the transition dlpOle moment of the TLS, and the We emphasize again the crucial role of the assumption
characteristic absorption time of the field by the TLS is that the TLS layers arsuch thinner than a wavelengénd
satisfy the Bragg condition. Without this assumption we
To=Nop” WhI2Tw 0o, (4)  could not have obtained Eg&) — (8) which are closed ifP
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andw. This makes the present analysis principally at vari-
ance with Ref[7], where the active medium is assumed to
be uniform, althougtisee Appendixes D and E and Sec. VIl
closed equations of motiazannotbe obtained then. Further-
more, highly nontrivial field structures can evolve in a uni-
formly doped mediunj9], due to higher order Fourier com-
ponents of the polarization, which are omitted in Réf].
We finally note that the model of Reff10], i.e., a periodic
array of thin TLS layerswithout modulation of the linear
index of refraction, corresponds to systéd — (8) with 7
=0, and gives rise to a different dynamics.

B. Energy densities

To see the physical meaning of the quantifies and P,

we express the energy density of the electromagnetic field a

We= (18)fiwepo( |2 4|2 +[2 13, (14)
that of the TLS excitations as
Wa=(112hwopo(1—1-[P[?), (15

and the energy density of the TLS-field interaction as

W, = (12 fipory HIM(S  P*). (16)
From Eq.(14) we conclude thaS . |? and|S _|? are propor-
tional to the number of photons per TL&tom), in the
standing-wave symmetric and antisymmetric modes whos
antinodes and nodes, respectively, coincide with the activ
layers(see Fig. L Since the interaction time, [see Eq(4)]
is usually much larger than the optical periodr/2»., the
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FIG. 2. The dispersion curvegimensionless frequency vs
dimensionless wave vecté) at »=0.5 ands=—0.2. The solid
lines show the dispersion branches corresponding to the “bare”
(noninteracting grating, while the dashed and dash-dotted lines
stand for the dispersion branches of the grating “dressed” by the
active medium. The frequency bands that support the standing dark
and bright solitons are shaded. The arrow indicates a complete gap,
where no field propagation takes place.

degenerate rog¢= 4 is trivial, as it corresponds to the eigen-
mode (19) with A=B=0. The important roots are those of
the expression in the curled brackets in E20) (shown by
the dashed and dash-dotted lines in Fig.since they give
rise to the nontrivial spectral features to be studied here.
They will be shown below to correspond to bright or dark

interaction energy is negligible in comparison to the energiesolitons in the indicatedshaded bands.

of the field and atomic excitations.

C. Linearized spectrum

Ill. BRIGHT SOLITONS
Stationary solutions of Eq$12) and (13) corresponding

Before studying the consequences of the system nonling pright solitons were derived in Re]. Let us first reca-
earity, it is important to consider the spectrum produced byjtulate the main results. Stationary solutions for the

the linearized version of Eq$6), (12), and (13). Settingw
-1, and

2+:Aei(K§*XT)’ (17)
S, =X, (18)
P=Cée i x, (19

from the linearized equatioil3) we obtain thatC=i(Jd
— x) *A. Substituting this into Eqg6) and (12), we arrive
at the dispersion relation for the wave numberand fre-
guencyy in the form

(X*= 2= 1) (x— N(x— D[ x*— k*=(2+ 7%)]

+2(n—96)}=0. (20
Different branches of the dispersion relation generated b
Eq. (20) are shown in Fig. 2. The roofg= *+ \/x>+ 7 (cor-
responding to the solid lines in Fig. @riginate from the
driven equation(6) and represent the dispersion relation of
the Bragg reflector with the galy|<# [cf. Eq. (2)], that
does not “feel” the interaction with the active layers. The

symmetric-mode fiel® , and polarizatiorP are sought in
the forms

3.=e""§(), P=ie”'X"P(Y), (21)
with real P andS. Substituting this into Eq(13), we elimi-
nate® in favor of S,

___Sgnx—9)S 22
Vx= o7 +[S*
and obtain an equation fa&#({),
- -0
5”2(772_)(2)8_28(77 X)Sgr(X ) (23)

where the prime stands fal/d{. Equation(23) can be cast

Ynto the form of Newton’s equation of motion for a particle

with coordinateS({) moving in a potential(S),
§"=-U'(S), (24)

where
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U(S)=—3(n*—x*S*+2(n—x)
xsgrix— &) (x— 8)2+S2.

The potential will give rise to bright solitons, provided it
has two symmetric minimgb]. As follows from Eq.(25), the

(29)

latter condition implies that the quadratic part of the potential

is concave, i.e.lx|> 7, and the secon¢asymptotically lin-
ean part of expressiorni25) is convex, so thay< 5. More-
over, two minima separated by a local maximumd&s0
appear ifU”(0)<0. From this inequality it follows that
bright solitons can appear in two frequency bandsthe
lower band being

X1<x<min{x,,— 7,3}, (26)
and the upper band
max x1, 7,8t <x<Xxz, (27)
where the boundary frequencigs , are given by
X1.=(U2[ 6= 7% (5+5)7+8]. (28

The lower band exists for all valueg>0 and é, while the
upper one only exists for
5> n—1ly, (29

which follows from the requirement,> 7 [see Eq.(27)].
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FIG. 3. A typical example of a bright soliton. The variablgs
‘P, and A are plotted as functions af for the parameterg=0.2,
6=—2,andy=0.4.

Fig. 3. Note that, depending on the parameters, and y,
the main part of the soliton’s energy can be carried by either
theX , or 2 _ mode.

Thus far we have been dealing with standiiogiescent
solitons. To obtain moving solitons, the following procedure
has been used in RdK]. The standing-soliton solution has
been multiplied by a factor exp¢?), i.e., the soliton solution
has been used as a modulation for a plane wave. It has been

The bright soliton corresponds to the solution of the New-humerically shown that such structures are stable and move

ton equation24) with the “particle” sitting at time—c on
the local maximumS=0, then swinging to one side and
finally returning toS=0 at time +9. Such solutions have
been found in an implicit form in Ref5]:

S(O)=2|x—sIR(OA-R*({))™4, (30)
with
|z|=\/€_{(1—7€§>‘1’2tan‘1 ng_;g
+(2Ro) tIn @” (3D
and
R3=1—w. (32

The polarization amplitudé® is determined byS via Eq.
(22).

To calculate the electric field in the antisymmetdic
mode, we substitute

S _=ie X A() (33
into Eq. (6), and obtain
A"+ (x*— 7P A=2P", (34

which can be easily solved by the Fourier transform, once
P(¢) is known. An example of bright solitons is depicted in

with a k-dependent velocity.

IV. DARK SOLITONS

Dark solitons are obtained similarly to the bright ones, by
solving Eq.(24) with potential(25). The potential will give
rise to DS’s provided that it has two symmetric maxima. In
this case the quadratic part of the potential is convex, i.e.,
|x|<#, and the secondasymptotically linear part of ex-
pression(25) is concave, so thay>é§. From these two in-
equalities, a simple necessary restriction on the model’s pa-
rameters follows

5< 7. (35

The condition for the existence of the symmetric maxima
determines the following frequency interval(recall thatz
is defined to be positiye

max 8, — n}<x<min{xz, 7}, (36)
Making use of Eq(28), one can easily check, once condition
(35) is satisfied, that the DS-supporting ba(@b) always
exists. The DS frequency range defined by E86) is
marked by shadingto the right from zerpin Fig. 2. The
maxima of the potential are located at the points

Sw==\4(n+x) 7= (x—9)%, (37
which correspond to the polarization values
Pu=7 1= (U4 (x—8)*(x+n)*. (38)
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FIG. 5. Field energy densities as a function of the coordigate

FIG. 4. A typical example of a dark soliton, presented in terms;ciqe the dark soliton shown in Fig. & , |2 (dashed ling |S _|?

of the variablesS, P, and.A. The parameters arg=0.6, 5=
and y=0.25.

-2,

Integrating Eq(24) by means of energy conservation in the
formal mechanical problem, we obtai#({) in an implicit
form

1 S dSl

YL W
NCELNTTIEN)
1 S dSl

=+— , (39
\/E 0 \/UM-I—aSi—,B\/yZ-I—Si

with
a=3(n*—x%, B=2(n—x), y=x—95. (40

Solution (39) corresponds to a trajectory connecting the po-

tential maximum at+ Sy, in “time” ¢ = o to the other
one at— Sy, in “time” (= *«. In terms of the2, mode of
the electric field, this is exactly a quiescdmero-velocity

DS with the background cw amplituds, .

Integral (39) can be formally expressed in terms of in-
complete elliptic integrals, but, practically, it is more helpful
to evaluate it numerically. As in Sec. lll, the polarization
amplitudeP is determined bysS via Eg.(22), and the ampli-
tude of theX _ mode is obtained by solving E@34). An
example of the amplitudé for a DS in theX , mode, to-
gether with the corresponding quantitiesand.4, are plotted
in Fig. 4.

The energy density of thE , |? field mode always has
the shape of a hole in the backgroufse Fig. 5. The en-
ergy density ofl > _|? has a hump, which is the counterpart

(dash-dotted ling and their sunm(continuous ling

equality (35) is satisfied. On the other hand, bright solitons
are found in two frequency bands given in Eqgs.(26) and
(27). From the discussion in Sec. Il it follows that the DS
frequency banalways coexistsvith one or two bands sup-
porting the bright solitons. The special case when there are
two bright-soliton bands coexisting with the DS band is
singled out by the condition

1

One can readily check that the coexisting frequency bands
supporting bright and dark solitons never overlap, i.e., quite
naturally, the bright and dark solitons cannot have the same
frequency.

V. STABILITY ANALYSIS
A. Background stability

An obvious necessary condition for the stability of a DS is
the stability of its cw background. To tackle this problem, we

use Eq.(13) to eliminate, , in favor of P,
3,=—(P,—isP)(1-|P})~*2 (42

and insert it into Eq(12). The resulting equation foP is
linearized around the stationary vali®, [see EQq.(38)],
substituting

P=Pye 'XT1+a({,7)+ib({,7)], (43

wherea andb are small real perturbations. We thus obtain a

of the hole in the% , mode. The net electromagnetic energy cumbersome system of linear real equations doand b,

density may have either a holerhich always exceeds zero
or a hump, depending on the system paramepessd 6 and
the soliton frequency.

As mentioned in Sec. |, a very interesting question is

which is not displayed here. It is convenient to look for its
general solution in the forfcf. Eq. (19)],

a(l,1)=ape' " (¢, 7)=bye! <7D (44

whether the system can support bright and dark solitons for

the same valuef the parameters. As mentioned above,

DS’s always exist in the frequency intervé6), once in-

which leads to a dispersion relation fo and «, that con-
sists of two parts:
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—(x—=8)(x+ n)?Q3=2[x(x— &) (x+ 7)?+2]Q?
+[(np+x)3(n—8)(x— ) —8x
+(x— ) (x+ 7)%k*1Q

+H(7 = xA)[4=(x— )% (n+x)?]+4Kx*=0 (45)
and
— Q%= (Bx— Q%+ [(7—x)(2x+ 71— &) + £*]Q
+(x— 8)k2=0. (46) ‘2'2
We have checked numerically that, for many values of -3.5¢

6, andy that support DS’s according to the results obtained _, i ; ;

in Sec. IV all the roots of Eqg45) and(46) are real forany 9 &5 L 15 2 25 3

real k. This implies the stability of the background for these

values of 7, 6, and y. We have never found any values FIG. 6. Parameter regionsp(vs x) for dark [Eq. (36)] and

compatible with the existence of DS that would give rise to abright [Egs. (26) and (27)] solitons até=—2. The boundarieg

background instability. and x, are given by Eq(28). In the DS region, the darkest area
Equations (45) and (46) represent dispersion relations corresponds to §table behavior, Whgreas in the remaining part the

which are valid under the condition of strong background(Numerical solutions are unstable: in the lightest ar@d DS’s)

field Sy, , and then replace the zero-field dispersion reIationTégStab'_"ty develops very quickly, while in the intermediate area the

of Eq. (20). This kind of optical bistability can be compared S exists for a much longer time before the onset of the instability.

to the distributed feedback bistability with Kerr nonlinearity )
studied in Ref[11]. S=exp—ix7)S(¢,7), (47)

B. Direct numerical stability tests T =Texp—ix DAL, “8)

Even though there is no evidence of background instabil- P=iexp—ixn)P(, 7). (49
ity, we have to simulate the full system of the partial differ-
ential equations, in order to directly test the DS stability. We
have numerically integrated Eqd.2) and(13), with the ini-
tial condition differing from the exact DS solution by a small  Thus far we have considered only quiescent DS’s. A chal-
perturbation added to it. Two different kinds of small pertur-lenging question is whether they also have moving counter-
bations have been tested) a spatially extended random parts. Adding the velocity parameter to the exact DS solution
noise added independently 3o, andP, and(ii) a localized s not trivial, as the underlying equatiofs2) and(13) have
perturbation in the form of a Gaussian multiplied by no Galilean or Lorentzian invariance. The physical reason
exp(x{), added to the fiel& . . for this is the existence of the speciddboratory reference

The results are strongly dependent on the parameters frame, in which the Bragg grating is at rest. In principle we
6, andy: for some values we have observed an explosion otan, in analogy to the stationary solutions and &4d), sub-
the initial perturbation, leading to a completely irregular pat-stitute functions of the argument € v ) into the set equa-
tern, whereas for others the DS shape teasained virtually  tions (12) and (13) to obtain an ordinary differential equa-
undisturbed The dependence of the stability on the param-tion. However this equation is a complicated complex
eters and y with fixed & is shown in Fig. 6. The darkest nonlinear equation of the third order, containing all the lower
area of the DS parameter region corresponds to the stabiizrivatives, so that we could not take the advantage of the
regime where no instability has occurred during the entireNewton-like structure as in Secs. Il and IV. Though it is
simulation time(typically, 7~500). In the rest of the param- possible to solve such an equation numerically, we have cho-
eter region, DS are unstable: in the lightest part of the DS’sen to deal with the original set of partial differential equa-
region, the instability develops very quickliat 7<<50), tions to better understand the nature of the evolution.
whereas in the intermediate part the instability builds up rela- As a first attempt, suggested by the analogy with the clas-
tively slow. As can be seen, the unstable behavior occursical DS's in the nonlinear Schdimger (NLS) equation, we
closer to the boundaries of the existence regjon,= » and  have tried to generate the moving solitons by multiplying, in
x= 6, whereas along the boundagy= x, (corresponding to the initial conditions, the quiescent DS’s by a factor propor-
the DS-supporting background which degenerates into thdonal to exp{x{), thus assuming a traveling-wave cw back-
trivial zero solution, DS’s are stable. ground. The exact traveling-wave cw solutions can easily be

A typical example of the stable behavior is displayed infound by suitably generalizing substitutiof&l) in the sys-
Fig. 7: an initial perturbation pulse splits and propagategem os equation&l?) and(13). However, this approach has
across the DS without affecting it. In plotting the figure we never produced a moving DS.
have used thé&ime dependentenvelopesS, A, andP with- It has proven possible to generate stable moving DS’s
out the oscillatory part expfix7), i.e., from quiescent ones in a different way. To this end, recall

VI. MOVING DARK SOLITONS
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FIG. 8. Moving dark soliton: the values of the parameters are
the same as in Fig. 4, the background phase-jump pararpdte
Egs. (50) and (51)] is ¢=—w/4. Dashed line:ir=0; continuous
line: 7=600.

sition between two background values with phases differing

by 7r. A principal difference of the DS’s in the present model

from those in the NLS equatid] is that here a moving DS

is generated by introducing a phase jusapr across the DS.
We have accordingly taken the initial condition for the

system of equation€l2) and(13) as

e A

.|
Sq(Q) +i sm( E) Su» (50

......... 2+(§,0):cos<§

P=cos(§) Pq() +i sin(?)pM, (51)

whereS, andP, are the(rea) functions corresponding to the
quiescent DS’sS,, and Py, are given by Eqs(37) and(38)
and ¢ is the deviation fromr of the background phase jump
across DS'’s. A typical result obtained by means of this modi-
fication of the initial state is displayed in Fig. 8: the DS
moves at a velocity that is proportional th. The resulting
form of the moving DS is slightly different from that of the
quiescent soliton. The moving DS appears to be stable over
the entire simulation time. Therefore, we conclude that a
local phase jump different fromr is an effective way to
generate moving DS’s.

VII. FINITE WIDTH OF THE ACTIVE LAYERS

o -40 -20 0 20 40 60 So far, we have assumed that TLS layers are infinitesi-
Q mally thin. This assumption has allowed us to replace the

infinite hierarchy of equations for different Fourier compo-

FIG. 7. Evolution of a dark soliton with a superimposed pertur- nents of the TLS polarization by Eq¢12) and (13). As
bation. -:—,he Paé‘"gg)ettehrs ;akitfael.sameg;éues S‘Sthi” dFig.h4<.j Tt:‘edcoghown in Appendix C, this is due to our requirement that all
tinuous line is , the dashed line is , and the dash-dotte ) : ; :

line is Re(4). Plots(a), (b), and(c) correspond, to the initial con- tr;e TLS's be Ipcated at t(;\ehannao_des |Of _the_qua5| standmﬁq
ditions (- 0), 7— 40, andr— 80, respectively. electromagnetic wave and thus their polarizations rotate witf
the same frequencies. If the envelope of the electromagnetic

field varies slowly with position, so does the atomic polar-

that a DS corresponds to a transition between two differenization. The situation is different if the TLS’s are distributed
values of the background cw field. The background fieldover lengths that are comparable to the wavelength: TLS’s in

takes, generally, complex valufsote the real values in the different positions within the layer are subject to different
expression$37) and(38) are only our choices adopted above Rabi frequencies. It is the purpose of this section and Appen-

for conveniencg The quiescent DS’s correspond to a tran-dix D to estimate the effect of non zero width of the active
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layers which corresponds to more realistic physical situa-
tions.

We still assume the width of the active layers to be small
in comparison to the wavelength. This allows us to expand
the polarization as a Taylor series in the position within the
layer, and consider only terms up to the second order. Aver-
aging the polarization over the entire wavelength yields the

PRE 60
_i oW 64
Wl:EE . ) (64)
=2,
1
Wo= Eg—z w ) (65

Z:ZZj

source term of the Maxwell equations. Following the deriva- ) »
tions in Appendixes D and E, we obtain the set of equationd/hereézz; is the position of the center of the nearest even

of motion in the forms of

active layer. Equation&2) — (56) with their complex con-
jugates, and Eqg57) — (59), form a closed set of 13 inde-

723, P, P, pendent equations for the variablEs , % _, Py, Pg, and
T 7?3 +2igPo+2— P¢ with their complex conjugates amd,, w,, andw,, i.e.,
JT 24 It 13 real variables together. The equations are parametrized by
JP~ 9P three real parametens, 5, andy. Note that, fory=0, Egs.
+ 92 i Pt — — _B}, (520 (52, (53, (54) and(57) are identical to Eq5), (6), (7) and
ar I (8), respectively, withP, standing forP.
Even though the number of equations and variables has
9?3 9?3 _ ) dPq now increased, they are still relatively easy to solve numeri-
972 B a2 -7 2—_23_§ cally. They realistically express the properties of the system
over quite long times. This is very important for studying the
) dPc  JdPg properties ofstanding solitons— it would not be true if we
+y° —inPg— a_g_ a7 (53 used a Fourier expansion of the polarization as in R&f.
The problem with the treatment of Rdf7] is that all the
for the field quantities, and higher Fourier components would have enough time to de-
velop, so that it would be impossible to adequately truncate
dPg . the system of equations.
prmb —i10Po+We2 (54 We have studied the influence of the layer width on the
standing solutions. It is assumed that the change of the shape
JP can be expanded by means of the smallness parameter
—LB- —i6Pg+2wg2 _ —2w, 3, (550  Considering that fory?=0 the quantitiesS , and P, are
aT given by 3 =e X7 §(¢), and Po=ie X" P({), whereS
5 andP are real, we ezxpand the quantities of the field and of
%: ISP WSS+ 2W,S (56 the TLS's for finitey* as
S, =e XS+ y2S)+0(yY), (66)
IWq 1 N .
Gr - arPetec =7 Po=ie "(P+2P)+O(y", (67)
—ia—iXT 2 4
%=EE_P’5—EE+P§—C.C., (58 2_=ie XA+ y°A)+0(y"), (68
dr 2 4 _
Pg=e X"B+0(?), (69
IW5, L, 1 )1 . L )
?:2+(P0—§PC>—EEPB+C.C. (59 Pc=ie XC+0O(v7). (70)

for the TLS variables. The dimensionless parameted is
proportional to the active layer widffsee Appendix D for
the definition, Eq(D2)]. The new dynamical quantities are

defined as

Po=P(zy), (60)
_ 2i9P
B=—?E|z:zzj, (61)
1 4
PCE(_z_Z_l)P y (62)
ke 9z 22,
Wo=W(Zy;), (63

HereS, S, P, P, A, A, B, andC are real functions of. In
Appendix F we derive equations for the correcting terms,
which have been solved numerically.

The validity of this expansion has been checked by direct
simulation of the evolution equations. The magnitude of the
correcting terms varies with the system parameters, and so
does the time evolution: for some values#f 5, and y the
set of equations for finite width layers evolve into an irregu-
lar pattern, whereas for other valuéise system remains
stable(e.g., for the parameters of Fig).4

VIII. EXPERIMENTAL CONDITIONS

The effects of TLS dephasing and deexcitation has been
studied by substituting the valuesis—1",7y for the fre-
quency term—ié in Egs. (54)—(56) and the loss terms
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—I'y79(wg+1) in Eq. (57), —T'yw, in Eqg. (58), and tons, with a constant phase difference ) of the back-
—-TI'41(w,—2) in Eq. (59). These modificationbave not in- ground amplitudes. The latter property is a major difference
fluenced the qualitative behaviasf the solutions during from the dark solitons of the NLS equation, whose motion is
times r7o<1/T" 5. supported by giving the background a nonzero wave number.

Let us now discuss the experimental conditions for theDepending on the values of the parameters, the frequency
realization of the solitons, using quantum wells embedded ifband of the quiescent dark solitons coexists with one or two
a semiconductor structure with periodically alternating linearbands of the stable bright ones, without an overlap. Direct
index of refraction[12]. We can assume the following val- numerical simulations demonstrate that some dark-soliton
ues: the average refraction indexrig=3.6, and the wave- solutions are stable against arbitrary small perturbations,
length(in the mediumis A~232 nm, which corresponds to whereas others are unstable, when they are close to the
the angular frequencyw,~2.26x10'® s 1. Excitons in  “dangerous” boundaries of their existence domain.
quantum wells can, under certain conditiofssich as low We have discussed the possibilities of experimental real-
densities, and an operating frequency close to an excitonization of such standing solitons in a semiconductor Bragg
resonance; see R¢fl2] for detail9 be described as effective structure with quantum wells as active layers. It seems that
TLS’s. We consider their surface density to bethe relatively short dephasing time is the most important
~10%-10" cm™?, which corresponds to a bulk densjty ~ limitation on their realization. It has been shown that for
~10%-10"% cm™3. If we assume that the excitons are some values of the parameters the system evolution is only
formed by electrons and holes displaced 4y —10 nm, weakly influenced by the non zero width of the active layers.
then the characteristic absorption timg defined in Eq.(4)
is 7o~10 1-10 12 s, and the corresponding absorption ACKNOWLEDGMENTS
length iscty/ng=~10-100 xm. Thus the structures shown
in Figs. 3, 4, 5, 7, and 8 occupying region of approximately
100 absorption lengths would require a device of the tota
width of approximately 1 mm to 1 cm, which corresponds to
~10°-10" unit cells. The modulation of the refraction index
can be as high as;~0.3, so that the parameter[see Eq. APPENDIX A: BLOCH EQUATIONS
(10)] can vary from 0 to 18 The unit of the dimensionless e start with the Hamiltonian for a single atom in the
detunings would represent a 16—10"? fraction of the car-  fie|q,
rier frequency. The intensities of the applied laser field cor-
responding t& . ~1 are then of the order $810' W/cn?. ~  fhwg. n
The dephasing time discussed [it2] is 1M ,~10" 13 s, H:TW_E'd’ (A1)
which seems to be the chief limitation of the standing soliton
lifetime. Decreasing the dephasing rate appears to be thehere
main experimental challenge. R

In Ref.[12] the width of the quantum wells is considered w=|e)(e|—|g){gl, (A2)

to be 5-20 nm, which corresponds to the paramefdrsee ) ) -
Eq. (D3)] in the range 103-2x 10" 2. In our simulations, where w, is the atomic transition frequencyg) and |e)

taking the largest of these values and the parameters as #¢note the atomic ground and excited states, respectizely,
Fig. 4, i.e.,7=0.6, 6= —2, andy=0.25, we have observed is the electric field vector, andlis the atomic dipole moment
the time evolution of the system of equatioi®®)—(59). As  operator. We take projection on the field direction so that
the initial condition we have taken both the DS solution cor-g. 4= Ed, where
responding to the zero width of the active layers, and the DS

solution including the finite width correction as derived in -
Appendix F. In both cases the evolution was quite regular d=
over the observed time~50, with the corrected solution

[Egs. (66)—(70)] remaining virtually unchanged, and the y being the dipole moment matrix elemenhosen realand
zero-width solution[quantitiesS,P, and A given by Egs.

We thank A. Kozhekin for useful discussions. This work
as supported in part by the European Un{@MR), Israel
cience Foundation, and Minerva Foundation.

(P+PT), (A3)

(39), (22), and(34)] starting to change after~10. |5£2|g)<e|. (A4)
We express the electric field in a given point by means of the
IX. DISCUSSION Rabi frequency() as
An optical medium combining a periodic refractive-index 2
grating a periodic set of thin active laydionsisting of two- E= Z—(Qe*‘“’ct+Q* eledhy, (A5)
o

level systems resonantly interacting with the fietiéhs been

investigated. Previously, it was demonstrated that this system ) ) s )
supports a vast family of bright gap solitofé,5]. In this ~ USiNg the Heisenberg equation of motiaA/dt=1/(i%)
work, we have shown that the system can support, dependirigp,H], defining dimensionless numbersP andw as

on the initial conditions, stable dark and bright solitons for L

the same values of the parametgvehich is a unique feature P=ie'“!(P), (AB)
for nonlinear optical media. We have found zero-velocity

dark solitons in an analytical form, and traveling dark soli- w=(W), (A7)
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and using the rotating wave approximation, we arrive at theand use the expressions for dimensionless positicend

Bloch equations

P=—i(wo—we)P+Ow, (A8)

w=—3(QP*+Q*P). (A9)

APPENDIX B: EQUATIONS OF MOTION OF THE FIELD
We start with the Maxwell equatiofione-dimensional,
one component of the field vecjor

,PE  PE 9Py
c——n =

Z)— ’
972 a2 at?

(B1)

with the refraction indexx modulated as in Eql), E being

the electric field component, ari®l, the nonlinear polariza-

tion. We use the substitution
E=[&(zt)ek?+ Eg(z,t)e KFle ot +c.c., (B2)

with . satisfying the dispersion relationyw.=k.c and &

and & denoting the forward and the backward propagating
field components. We work with the slowly varying enve-

lope approximation assuming

3253;‘ 553;‘
9z? ‘< ¢ oz | B3
(7255;‘ 555,F‘
e o

Substituting Eqg.(B2) into Eg. (B1), using Egs.(B3) and

(B4), multiplying by e'(Fke?*@) and averaging over the

wavelength\ = 27r/k; and the period’ =2#/w., we obtain

o L P (B5)
no dz = ot 4 o2
C (953 (955 ialwc
no dz  at 4 2M73p+, (B6)
where we define
Ilu‘Tg (9 Pnl —+
PiE— 5 2 |( Kez+ wt) , (B7)
ﬁwcno &t AT

with 7, an arbitrary constarilater we take advantage af
defined as in Eq(4)), and the averaging given as

< . .>)\'TE%J)\JT. ..dtdz

We express the field componerfis g by means of the di-
mensionless quantities.. defined agcf. Egs.(3) and(B2)]

(B8)

f

Ero= g (B4 %30),

(B9)

time 7 given in Eq.(9) and the parameten given in Eq.

(10); differentiating the equations again with respect tand
7 and using some algebra, we arrive at

25 ST Y _ d
P —(9—§2=—7;22++|7;(P++P_)+E_(P++P_)
" PP B10
+(9—§( +—P) (B10)

and

Pz s e L J
2 a7 2 otin(Py=P)=—— (P, —P)
P +p B11
—&—g( ++tP). (B11)

APPENDIX C: NONLINEAR POLARIZATION
AVERAGING: ZERO WIDTH OF TLS LAYERS

The polarizationP, in a given point can be expressed as
the dipole moment density

Py=4mo(d)=2mou((P)+(P"))

=—2mipu(Pe 'et—PpP*eled)  (C1)
wherep is the number of the two-level atoms in a unit vol-
ume. Neglecting the time derivatives Bf with respect to
those ofe™'“c!, we can write, for the polarization derivative,

‘92Pnl_ .2
2 =2miwioun(Pe

—lwgt _ P* ei‘”ct),

(C2

so thatP-. on the right-hand side of Eq&B5) and(B6) read
as

217(1)2#27'(2)

P.=————(oPe*k?), . (C3)
hn3

Let us now assume that the density of the atams con-

centrated in zero-width layers locatedzat such that

gikeZj+1=—1,

gikeZ2j=1, (CH

e., it is described by

90)\ 2 8(z—z), (C5)

whereg is the bulk density averaged over the whole wave-
length. We also assume that the space dependereésab

a good approximation antiperiodic with respect\i2, i.e.,
P(z+\/2)~—P(x). This is in agreement with the approxi-
mate antiperiodicity of the electric field with/2. Denoting
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by P, the values ofP in 2jth layers(the values in 2+ 1st potike “ikgzy 22,-+(M4)f
— ' NC =@ '"C
layers being-Py), we obtain the spatial average in EG.3) (ePe™™e),=e Qo 23— (1) (2)
as
’ 1 ” 2
27”%“2907_3 X | Po+ Po(z—zzj)+§ Po(z—2zp)"+ - -
+= 2 PO! (C6)
hng k2
X liik&z—za)—uf(z—za)2+...dL

note thatP, =P_ is the consequence of zero width of the
layers. Defining the timery as in Eq.(4), we obtain the (D4)
simple relation

wherePg, P}, andP{ refer to the value oP, and its spatial
P.=Po. (C7)  firstand second derivatives &t z,; . Neglecting higher than

guadratic terms and using the properties @f) [Eq. (D2)],
Using this expression in Eq&B10) and(B11), we obtainthe e arrive at

equations of motiort5) and (6) (note that the subscript 0 of

Po has been omitted in these equations for simpljcifjhe ' P, Py P,
equations for the polarizatioR, and inversionw, in the (oPe* %), ~ .| Po+ 72 _2i7_7 , (D5
2jth layers can be obtained from Eq#8) and (A9) by 2k
substituting for() [combine Eq.(3) and(A5)],
g [ q.(3) and(A5)] <o that
Q=r15Y(3 ;. coskez+i3 _sink.z), (C8) o i
~ o Po 1Po_Po

and applying Eq(C4) for the 2jth layers positions. Express- P.~Poty (2k2 = k 2 ) ' (D§)

ing the detuning as in Eq9), we obtain the equations of
motion (7) and (8). Using these values in EGC3), substituting into Eqs(B10)
and(B11), and considering the definitiori60)—(62), we ob-
tain the field equations of motion in the form of Ed52)
APPENDIX D: NONLINEAR POLARIZATION and (53).
AVERAGING: FINITE WIDTH OF TLS LAYERS

Let us assume that the TLS density is given, instead of APPENDIX E: EQUATIONS OF MOTION FOR ATOMIC

Eq. (C5), by PARAMETERS IN FINITE-WIDTH TLS LAYERS
oo We use Eq.(C8) for { in (A8) and (A9) to write the
0 . g :
o= Tf(x)’ (D1) Bloch equations in a poirt as
P ) o
whereg, is the density averaged over the whole wavelength —- = 16P+[codkn)X +isin(kz)Z - Jw, (E1)
and the functiorf(z) has the properties
oW 1
f(z2)=0, f(z+\/2)=1(2), == slcogkez)X, +isinkz)X_]P* +c.c. (E2)
zj+(\14)
f f(z)dz=1, Taking into account that the spatial derivativesXf are
7= (\4) much smaller than those of skaf) and cosk.z), and calcu-
lating the first and second derivatives in the paintz,; , we
Z+ (M) obtain
f zf(z)dz=0,
zj—(\/4)
Py
2+ (A/14) 52 W—_'5PO+E+W01 (E3)
f 2*f(z)dz=—, (D2)
zj— (N14) k Py
0 H ro !
—=— + _Wo+
where y<1 is a dimensionless parameter describing the ar 10Po Tk -Wo 2 Wy, E4
thickness of the layers. Note that for a rectangdlaf the
width D this parameter is Py ) _
oo = OPy—ke2 s Wot 2ik 2 _wy+2 wy  (ED)
ZDZ
2=~ (D3)
4 32 and
To calculate{ o Pe*'¢?), of Eq.(C3), we expand the spatial Wy

1
- *
dependence d? and expftik:z) in Taylor series, T 2E+ Potecc, (E6)
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WG ike . 1 .
F:_TE’P°_§E+PO +c.c., (E7)
(9W6 kg . % 1 "k
W_EEJrPO_IkCE*PO —§2+P0 +c.c. (EY

Using definitions(60)—(65), we arrive at the equations of
motion (54)—(59).

APPENDIX F: CORRECTIONS TO STANDING SOLITON
SOLUTIONS WITH FINITE-WIDTH TLS LAYERS

Let us expressvy up to the second order, ang, andw,
up to the zeroth order iry. We start from the requirement

w?(2)+P(z)P*(2)=1, (FD)
expandw andP in a Taylor series irz,;,
wp
W(2)=Wo+Wy(z—2y) + 7(2—221-)24— e (F2)
P(2)=Po+Pp(z-2)+ 5 (2-25)%+ -,  (FY

and compare the terms with equal powers of-¢,;), then
use Eqgs(60)—(65) to change fromwg, wg, P}, andPj to
Wy, Wy, Pc, andPg, and substitute foP,, Pc, and Py
from (67), (69), and(70). We thus obtain

Wo=—\1-P?*+ PP Y2+ 0(y% (F4)
1-P '
P +0(?) (F5)
W =i ——= ,
Yoy
8+ B2—12P%+4P4+4PC(1-P?) )
(F6)

Substituting the above results into E¢S5) and (69), we
obtain

OPATRN,Y, MALOMED, AND KURIZKI
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_2A(1-P?3

, F
TEr) F7
substituting into Eqs(56) and(70), we obtain
3P(1-P?)?
C= —73(2—732)—(—2)A2. (F8)
(x—9)

These results can be used to calculate the corrections to the
field variablesS, and.A and the correction of the polarization
P. Using Eq.(54) and comparing the? terms, we obtain

. (1_7)2)3/2_

ey = (F9)

and from Eq.(52) we obtain the differential equation

s, = —
d_§2+(X —n)S+2(x—n)P=—(x—nC+

dg
(F10

The functions on the right_-hand side of E§10) are known;
substituting Eq.(F9) for P we obtain, an inhomogeneous

second order equation f. We have solved this equation
numerically, discretizing the functions and using a matrix
inversion. Next using these results and substituting into Eq.

(53), we obtain a differential equation fo:

d2Z+( 2_ Z)Z—zdpﬂ +8)B
a2 T az
PAS
+— —2AT- P ——
dg V1-P?
(F11)

This is an inhomogeneous equation with constant coeffi-
cients. The right-hand side functions become known as soon

as we calculatéP.
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