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Dark and bright solitons in resonantly absorbing gratings
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We consider an optical medium consisting of a periodic refractive-index grating and a periodic set of thin
layers of two-level systems resonantly interacting with the electromagnetic field. Recently, it has been shown
that such a system gives rise to a vast variety of stable bright solitons. In this work, we demonstrate that the
system has another very unusual property: stable bright solitons can coexist with stable continuous-wave~cw!
states and stable dark solitons~DS’s!. Depending on the parameters’ values, a DS frequency band coexists
~without overlap! with one or two bright-soliton bands. Quiescent~standing! DS’s are found in an analytical
form, and moving ones are obtained numerically. Simulations show that a considerable part of the DS solutions
are completely stable against arbitrary small perturbations. The fact that this system supports both stable bright
and dark solitons for thesameparameters values may find interesting applications in photonics.
@S1063-651X~99!13311-7#

PACS number~s!: 42.65.Tg, 42.25.Bs, 42.50.Gy, 78.66.2w
i-
in
lf

ee
ei
th
a
in-
b-
en

i

as

n-

n
f

e.

be

te

o
n
g
e

S
m

’s.
n-
rs:
lu-
e

t-

the
le

ght

. II
lin-

ent-
is
e

nd
full
s
lly

re
rk
ma-
v-
re-

ly
I. INTRODUCTION

An intriguing optical property of one-dimensionally per
odic dielectric media is the existence of solitary waves
their band gaps known as ‘‘gap solitons.’’ These se
localized field structures arise due to the interplay betw
the medium nonlinearity and its Bragg reflections. Th
spectrum is tuned away from the Bragg resonance by
nonlinearity at sufficiently high field intensities. Theoretic
studies of gap solitons in Bragg gratings with Kerr nonl
earity @1# have been followed up by their experimental o
servation in a nonlinear optical fiber with the grating writt
on it @2#. Gap solitons have also been theoretically studied
gratings with second harmonic generation~SHG! @3#.

A principally different mechanism of gap solitons h
been revealed in a periodic array of thin layers ofresonant
two-level systems~TLS’s! separated by half-wavelength no
absorbing dielectric layers, i.e., aresonantly absorbing
Bragg reflector ~RABR! @4,5#. Such a RABR has bee
shown, forany Bragg reflectivity, to have, a vast family o
stable solitons, both standing and moving@4,5#. As opposed
to the 2p solitons arising in self induced transparency, i.
resonant field – TLS interaction in a uniform medium@6#,
gap solitons in a RABR can have anarbitrary pulse area
@4,5#. As shown below, gap soliton solutions can only
consistently demonstrated in a RABR withthin active TLS
layers. By contrast, a recent attempt@7# to obtain such solu-
tions in a periodic structureuniformly filled with active
TLS’s is physically unfounded, and fails for many parame
values.

A gap soliton is usually understood to be a moving
standing~quiescent! bright confined region, where light ca
freely propagate, in a dark background, where light is Bra
reflected. Along with these bright solitons, there is consid
able physical interest in dark solitons~DS’s!, i.e., ‘‘holes’’ of
a fixed shape in a continuous-wave~cw! background field of
constant intensity@8#. However, no example of a stable D
has thus far been known in any periodic nonlinear mediu
PRE 601063-651X/99/60~5!/6137~13!/$15.00
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A principal problem is themodulational instabilityof the cw
fields, i.e., the lack of a stable background to support DS
The main innovation of the present work is that it demo
strates an unexpected property of a RABR with active laye
alongside the previously studied stable bright-soliton so
tions @4,5#, this system gives rise to a family of DS’s, a larg
part of which arestable. While the existence of stable brigh
soliton solutions along withunstable dark solitons is a
known feature of uniform SHG media@8#, the RABR with
thin active layers provides, to the best of our knowledge,
first example of a nonlinear optical medium in which stab
bright and dark solitons exist for thesame valuesof the
model’s parameters~at different frequencies!. We believe it
is also the first example of the existence of stable bri
solitons alongsidestablecw ~background! solutions.

The rest of this paper is organized as follows. In Sec
we introduce the model, and analyze the spectrum of its
earized version. Properties of the standing~quiescent! bright
solitons are discussed in Sec. III. Exact solutions repres
ing quiescent DS’s are obtained in Sec. IV. Section V
devoted to the crucial issue of the stability of DS’s. First, w
analytically consider the stability of the cw solutions, a
then, by means of numerical simulations, we test the
stability of DS’s. In Sec. VI, we find moving DS’s by mean
of direct simulations, and conclude that they are drastica
different from the moving DS’s in the nonlinear Schro¨dinger
equation. Effects of the finite width of the active layers a
estimated in Sec. VII, experimental predictions of the wo
are discussed in Sec. VIII, and the conclusions are sum
rized in Sec. IX. In Appendixes A–F, derivations of the go
erning equations and of other important formulas are p
sented.

II. MODEL AND ITS LINEAR SPECTRUM

A. Equations of motion

As in Refs.@4# and @5#, we assume a one-dimensional
periodic modulation of the linear refractive indexn(z) along
6137 © 1999 The American Physical Society
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6138 PRE 60OPATRNÝ, MALOMED, AND KURIZKI
the z direction of the electromagnetic wave propagation~see
Fig. 1!. The modulation can be written as the Fourier ser

n2~z!5n0
2@11a1cos~2kcz!1a2cos~4kcz!1•••#, ~1!

wheren0 , aj , andkc are constants. For the propagation
waves whose wave vector is close tokc , only the coefficient
a1 is essential~see Appendix B!. The medium is assumed t
be infinite and homogeneous in thex and y directions. The
periodic grating gives rise to band gaps in the system’s lin
spectrum, i.e., the medium is totally reflective for wav
whose frequency is inside the gaps. The central frequenc
the fundamental gap isvc5kcc/n0 , c being the vacuum
speed of light, and the gap edges are located at the freq
cies

v1,25vc~16a1/4!, ~2!

wherea1 is the modulation depth from Eq.~1!. We further
assume thatvery thin TLS layers~much thinner than 1/kc),
whose resonance frequencyv0 is close to the gap centervc ,
are placed at the maxima of the modulated refraction ind
In other words, the thin active layers are placed at the po
zlayer such that cos(kczlayer)561. As discussed in Sec. VIII
quantum wells embedded in Bragg mirrors are adequa
described as TLS layers.

We shall study the propagation of the electromagne
waves with frequencies close tovc through the described
medium. The electric fieldE(z,t) will be decomposed into
cosine and sine spatial components, having dimension
slowly varying amplitudesS1 andS2 , respectively,

E~z,t !5\~mt0!21
„Re@S1~z,t !e2 ivct#coskcz

2Im@S2~z,t !e2 ivct#sinkcz…, ~3!

wherem is the transition dipole moment of the TLS, and t
characteristic absorption time of the field by the TLS is

t05n0m21A\/2pvc%0, ~4!

FIG. 1. Schematic description of the periodic structure and
composition of the electric field into modesS1 andS2 . The shad-
ing represents regions with different index of refraction; the dar
the shading the largern is. The black regions correspond to the TL
layers. The upper solid curve represents the electric field, the lo
solid curves correspond to the components Re(S1)coskcz and
2Im(S2)sinkcz, and the dashed curves are the envelopes Re(S1)
and2Im(S2). The vertical dotted lines denote the positions of t
TLS.
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%0 being the TLS density~averaged overz). As derived in
Appendixes A, B, and C, the Maxwell-Bloch equations
the slowly-varying-amplitude and rotating-wave approxim
tions yield the following set of governing equations for th
system:

]2S1

]t2
2

]2S1

]z2
52h2S112ihP12

]P

]t
, ~5!

]2S2

]t2
2

]2S2

]z2
52h2S222

]P

]z
, ~6!

]P

]t
52 idP1S1w, ~7!

]w

]t
52Re~S1P* !, ~8!

whereP is the dimensionless slow-varying polarization no
malized asuPu<1, andw is the TLS population inversion
ranging between21 and 11. Here, we have neglecte
losses and the finite width of the active layers, which a
analyzed in Sec. VII and Appendixes D and E. The dime
sionless timet, coordinatez, and detuningd are defined as
follows:

t[t/t0 , z[~n0 /ct0!x, d[~v02vc!t0 . ~9!

The dimensionless modulation strengthh in Eqs.~5! and~6!
is the ratio of the TLS absorption distance to the Bragg
flection distance, which can be expressed as

h5
a1vct0

4
. ~10!

Note thatS2 does not influence the evolution ofS1 , P and
w, but is driven by]P/]z.

Combining Eqs.~7! and ~8!, one can eliminate the TLS
population inversion:

w56A12uPu2. ~11!

Without the field-induced polarization, the TLS population
not inverted (w521), hence the lower sign must be chos
in Eq. ~11!. Thus the remaining equations forS1 andP form
a closed system,

]2S1

]t2
2

]2S1

]z2
52h2S112i ~h2d!P22A12uPu2S1 ,

~12!

]P

]t
52 idP2A12uPu2S1 , ~13!

andS2 , the field component driven by]P/]z, can then be
found from Eq.~6!.

We emphasize again the crucial role of the assump
that the TLS layers aremuch thinner than a wavelengthand
satisfy the Bragg condition. Without this assumption w
could not have obtained Eqs.~5! – ~8! which are closed inP

-

r

er



ri
to

II
-
i-
-

d

os
tiv

ie

li
b

b

o

e

-
f

re.
rk

he

le

re’’
es
the
dark
gap,

PRE 60 6139DARK AND BRIGHT SOLITONS IN RESONANTLY . . .
and w. This makes the present analysis principally at va
ance with Ref.@7#, where the active medium is assumed
be uniform, although~see Appendixes D and E and Sec. V!
closed equations of motioncannotbe obtained then. Further
more, highly nontrivial field structures can evolve in a un
formly doped medium@9#, due to higher order Fourier com
ponents of the polarization, which are omitted in Ref.@7#.
We finally note that the model of Ref.@10#, i.e., a periodic
array of thin TLS layerswithout modulation of the linear
index of refraction, corresponds to system~5! – ~8! with h
50, and gives rise to a different dynamics.

B. Energy densities

To see the physical meaning of the quantitiesS6 andP,
we express the energy density of the electromagnetic fiel

WF5~1/8!\vcr0~ uS1u21uS2u2!, ~14!

that of the TLS excitations as

WA5~1/2!\v0r0~12A12uPu2!, ~15!

and the energy density of the TLS-field interaction as

WI5~1/2!\r0t0
21Im~S1P* !. ~16!

From Eq.~14! we conclude thatuS1u2 anduS2u2 are propor-
tional to the number of photons per TLS~atom!, in the
standing-wave symmetric and antisymmetric modes wh
antinodes and nodes, respectively, coincide with the ac
layers~see Fig. 1!. Since the interaction timet0 @see Eq.~4!#
is usually much larger than the optical period 2p/vc , the
interaction energy is negligible in comparison to the energ
of the field and atomic excitations.

C. Linearized spectrum

Before studying the consequences of the system non
earity, it is important to consider the spectrum produced
the linearized version of Eqs.~6!, ~12!, and ~13!. Settingw
521, and

S15Aei (kz2xt), ~17!

S25Bei (kz2xt), ~18!

P5Cei (kz2xt), ~19!

from the linearized equation~13! we obtain thatC5 i (d
2x)21A. Substituting this into Eqs.~6! and ~12!, we arrive
at the dispersion relation for the wave numberk and fre-
quencyx in the form

~x22k22h2!~x2d!$~x2d!@x22k22~21h2!#

12~h2d!%50. ~20!

Different branches of the dispersion relation generated
Eq. ~20! are shown in Fig. 2. The rootsx56Ak21h2 ~cor-
responding to the solid lines in Fig. 2! originate from the
driven equation~6! and represent the dispersion relation
the Bragg reflector with the gapuxu,h @cf. Eq. ~2!#, that
does not ‘‘feel’’ the interaction with the active layers. Th
-
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degenerate rootx[d is trivial, as it corresponds to the eigen
mode~19! with A5B50. The important roots are those o
the expression in the curled brackets in Eq.~20! ~shown by
the dashed and dash-dotted lines in Fig. 1!, since they give
rise to the nontrivial spectral features to be studied he
They will be shown below to correspond to bright or da
solitons in the indicated~shaded! bands.

III. BRIGHT SOLITONS

Stationary solutions of Eqs.~12! and ~13! corresponding
to bright solitons were derived in Ref.@5#. Let us first reca-
pitulate the main results. Stationary solutions for t
symmetric-mode fieldS1 and polarizationP are sought in
the forms

S15e2 ixtS~z!, P5 ie2 ixtP~z!, ~21!

with real P andS. Substituting this into Eq.~13!, we elimi-
nateP in favor of S,

P52
sgn~x2d!S

A~x2d!21uSu2
, ~22!

and obtain an equation forS(z),

S 95~h22x2!S22S~h2x!sgn~x2d!

A~x2d!21S 2
, ~23!

where the prime stands ford/dz. Equation~23! can be cast
into the form of Newton’s equation of motion for a partic
with coordinateS(z) moving in a potentialU(S),

S 952U8~S!, ~24!

where

FIG. 2. The dispersion curves~dimensionless frequencyx vs
dimensionless wave vectork) at h50.5 andd520.2. The solid
lines show the dispersion branches corresponding to the ‘‘ba
~noninteracting! grating, while the dashed and dash-dotted lin
stand for the dispersion branches of the grating ‘‘dressed’’ by
active medium. The frequency bands that support the standing
and bright solitons are shaded. The arrow indicates a complete
where no field propagation takes place.
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U~S!52 1
2 ~h22x2!S 212~h2x!

3sgn~x2d!A~x2d!21S 2. ~25!

The potential will give rise to bright solitons, provided
has two symmetric minima@5#. As follows from Eq.~25!, the
latter condition implies that the quadratic part of the poten
is concave, i.e.,uxu.h, and the second~asymptotically lin-
ear! part of expression~25! is convex, so thatx,d. More-
over, two minima separated by a local maximum inS50
appear if U9(0),0. From this inequality it follows that
bright solitons can appear in two frequency bandsx, the
lower band being

x1,x,min$x2 ,2h,d%, ~26!

and the upper band

max$x1 ,h,d%,x,x2 , ~27!

where the boundary frequenciesx1,2 are given by

x1,2[~1/2!@d2h7A~h1d!218#. ~28!

The lower band exists for all valuesh.0 andd, while the
upper one only exists for

d.h21/h, ~29!

which follows from the requirementx2.h @see Eq.~27!#.
The bright soliton corresponds to the solution of the Ne

ton equation~24! with the ‘‘particle’’ sitting at time2` on
the local maximumS50, then swinging to one side an
finally returning toS50 at time1`. Such solutions have
been found in an implicit form in Ref.@5#:

S~z!52ux2duR~z!„12R 2~z!…21, ~30!

with

uzu5A2Ux2d

x2hUF ~12R 0
2!21/2tan21AR 0

22R 2

12R 0
2

1~2R0!21lnS R01AR 0
22R 2

R D G ~31!

and

R 0
2512

u~x1h!~x2d!u
2

. ~32!

The polarization amplitudeP is determined byS via Eq.
~22!.

To calculate the electric field in the antisymmetricS2

mode, we substitute

S25 ie2 ixuA~z! ~33!

into Eq. ~6!, and obtain

A 91~x22h2!A52P 8, ~34!

which can be easily solved by the Fourier transform, on
P(z) is known. An example of bright solitons is depicted
l

-

e

Fig. 3. Note that, depending on the parametersh, d, andx,
the main part of the soliton’s energy can be carried by eit
the S1 or S2 mode.

Thus far we have been dealing with standing~quiescent!
solitons. To obtain moving solitons, the following procedu
has been used in Ref.@5#. The standing-soliton solution ha
been multiplied by a factor exp(ikz), i.e., the soliton solution
has been used as a modulation for a plane wave. It has
numerically shown that such structures are stable and m
with a k-dependent velocity.

IV. DARK SOLITONS

Dark solitons are obtained similarly to the bright ones,
solving Eq.~24! with potential~25!. The potential will give
rise to DS’s provided that it has two symmetric maxima.
this case the quadratic part of the potential is convex,
uxu,h, and the second~asymptotically linear! part of ex-
pression~25! is concave, so thatx.d. From these two in-
equalities, a simple necessary restriction on the model’s
rameters follows

d,h. ~35!

The condition for the existence of the symmetric maxim
determines the following frequency intervalx ~recall thath
is defined to be positive!:

max$d,2h%,x,min$x2 ,h%, ~36!

Making use of Eq.~28!, one can easily check, once conditio
~35! is satisfied, that the DS-supporting band~36! always
exists. The DS frequency range defined by Eq.~36! is
marked by shading~to the right from zero! in Fig. 2. The
maxima of the potential are located at the points

SM56A4~h1x!222~x2d!2, ~37!

which correspond to the polarization values

PM57A12~1/4!~x2d!2~x1h!2. ~38!

FIG. 3. A typical example of a bright soliton. The variablesS,
P, andA are plotted as functions ofz for the parametersh50.2,
d522, andx50.4.
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Integrating Eq.~24! by means of energy conservation in th
formal mechanical problem, we obtainS(z) in an implicit
form

z56
1

A2
E

0

S dS1

AUM2U~S1!

[6
1

A2
E

0

S dS1

AUM1aS 1
22bAg21S 1

2
, ~39!

with

a[ 1
2 ~h22x2!, b[2~h2x!, g[x2d. ~40!

Solution ~39! corresponds to a trajectory connecting the p
tential maximum at1SM in ‘‘time’’ z 5 7` to the other
one at2SM in ‘‘time’’ z56`. In terms of theS1 mode of
the electric field, this is exactly a quiescent~zero-velocity!
DS with the background cw amplitudeSM .

Integral ~39! can be formally expressed in terms of i
complete elliptic integrals, but, practically, it is more helpf
to evaluate it numerically. As in Sec. III, the polarizatio
amplitudeP is determined byS via Eq. ~22!, and the ampli-
tude of theS2 mode is obtained by solving Eq.~34!. An
example of the amplitudeS for a DS in theS1 mode, to-
gether with the corresponding quantitiesP andA, are plotted
in Fig. 4.

The energy density of theuS1u2 field mode always has
the shape of a hole in the background~see Fig. 5!. The en-
ergy density ofuS2u2 has a hump, which is the counterpa
of the hole in theS1 mode. The net electromagnetic ener
density may have either a hole~which always exceeds zero!
or a hump, depending on the system parametersh andd and
the soliton frequencyx.

As mentioned in Sec. I, a very interesting question
whether the system can support bright and dark solitons
the same valuesof the parameters. As mentioned abov
DS’s always exist in the frequency interval~36!, once in-

FIG. 4. A typical example of a dark soliton, presented in ter
of the variablesS, P, andA. The parameters areh50.6, d522,
andx50.25.
-

s
or
,

equality ~35! is satisfied. On the other hand, bright solito
are found in two frequency bandsx, given in Eqs.~26! and
~27!. From the discussion in Sec. III it follows that the D
frequency bandalways coexistswith one or two bands sup
porting the bright solitons. The special case when there
two bright-soliton bands coexisting with the DS band
singled out by the condition

h2
1

h
,d,h. ~41!

One can readily check that the coexisting frequency ba
supporting bright and dark solitons never overlap, i.e., qu
naturally, the bright and dark solitons cannot have the sa
frequency.

V. STABILITY ANALYSIS

A. Background stability

An obvious necessary condition for the stability of a DS
the stability of its cw background. To tackle this problem, w
use Eq.~13! to eliminateS1 in favor of P,

S152~Pt2 idP!~12uPu2!21/2, ~42!

and insert it into Eq.~12!. The resulting equation forP is
linearized around the stationary valuePM @see Eq.~38!#,
substituting

P5P Me2 ixt@11a~z,t!1 ib~z,t!#, ~43!

wherea andb are small real perturbations. We thus obtain
cumbersome system of linear real equations fora and b,
which is not displayed here. It is convenient to look for
general solution in the form@cf. Eq. ~19!#,

a~z,t!5a0ei (kz2Vt), b~z,t!5b0ei (kz2Vt), ~44!

which leads to a dispersion relation forV and k, that con-
sists of two parts:

s
FIG. 5. Field energy densities as a function of the coordinatz

inside the dark soliton shown in Fig. 4:uS1u2 ~dashed line!, uS2u2

~dash-dotted line!, and their sum~continuous line!.
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2~x2d!~x1h!2V322@x~x2d!~x1h!212#V2

1@~h1x!3~h2d!~x2d!28x

1~x2d!~x1h!2k2#V

1~h22x2!@42~x2d!2~h1x!2#14k250 ~45!

and

2V32~3x2d!V21@~h2x!~2x1h2d!1k2#V

1~x2d!k250. ~46!

We have checked numerically that, for many values ofh,
d, andx that support DS’s according to the results obtain
in Sec. IV all the roots of Eqs.~45! and~46! are real forany
realk. This implies the stability of the background for the
values ofh, d, and x. We have never found any value
compatible with the existence of DS that would give rise t
background instability.

Equations ~45! and ~46! represent dispersion relation
which are valid under the condition of strong backgrou
field SM , and then replace the zero-field dispersion relatio
of Eq. ~20!. This kind of optical bistability can be compare
to the distributed feedback bistability with Kerr nonlineari
studied in Ref.@11#.

B. Direct numerical stability tests

Even though there is no evidence of background insta
ity, we have to simulate the full system of the partial diffe
ential equations, in order to directly test the DS stability. W
have numerically integrated Eqs.~12! and~13!, with the ini-
tial condition differing from the exact DS solution by a sma
perturbation added to it. Two different kinds of small pertu
bations have been tested:~i! a spatially extended random
noise added independently toS1 andP, and~ii ! a localized
perturbation in the form of a Gaussian multiplied b
exp(ikz), added to the fieldS1 .

The results are strongly dependent on the parameterh,
d, andx: for some values we have observed an explosion
the initial perturbation, leading to a completely irregular p
tern, whereas for others the DS shape hasremained virtually
undisturbed. The dependence of the stability on the para
etersh and x with fixed d is shown in Fig. 6. The darkes
area of the DS parameter region corresponds to the st
regime where no instability has occurred during the en
simulation time~typically, t;500). In the rest of the param
eter region, DS are unstable: in the lightest part of the D
region, the instability develops very quickly~at t,50),
whereas in the intermediate part the instability builds up re
tively slow. As can be seen, the unstable behavior occ
closer to the boundaries of the existence region,x56h and
x5d, whereas along the boundaryx5x2 ~corresponding to
the DS-supporting background which degenerates into
trivial zero solution!, DS’s are stable.

A typical example of the stable behavior is displayed
Fig. 7: an initial perturbation pulse splits and propaga
across the DS without affecting it. In plotting the figure w
have used the~time dependent! envelopesS, A, andP with-
out the oscillatory part exp(2ixt), i.e.,
d

a

s
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-

f
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-

le
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S15exp~2 ixt!S~z,t!, ~47!

S25 i exp~2 ixt!A~z,t!, ~48!

P5 i exp~2 ixt!P~z,t!. ~49!

VI. MOVING DARK SOLITONS

Thus far we have considered only quiescent DS’s. A ch
lenging question is whether they also have moving coun
parts. Adding the velocity parameter to the exact DS solut
is not trivial, as the underlying equations~12! and~13! have
no Galilean or Lorentzian invariance. The physical reas
for this is the existence of the special~laboratory! reference
frame, in which the Bragg grating is at rest. In principle w
can, in analogy to the stationary solutions and Eq.~21!, sub-
stitute functions of the argument (z2vt) into the set equa-
tions ~12! and ~13! to obtain an ordinary differential equa
tion. However this equation is a complicated compl
nonlinear equation of the third order, containing all the low
derivatives, so that we could not take the advantage of
Newton-like structure as in Secs. III and IV. Though it
possible to solve such an equation numerically, we have c
sen to deal with the original set of partial differential equ
tions to better understand the nature of the evolution.

As a first attempt, suggested by the analogy with the c
sical DS’s in the nonlinear Schro¨dinger ~NLS! equation, we
have tried to generate the moving solitons by multiplying,
the initial conditions, the quiescent DS’s by a factor prop
tional to exp(ikz), thus assuming a traveling-wave cw bac
ground. The exact traveling-wave cw solutions can easily
found by suitably generalizing substitutions~21! in the sys-
tem os equations~12! and ~13!. However, this approach ha
never produced a moving DS.

It has proven possible to generate stable moving D
from quiescent ones in a different way. To this end, rec

FIG. 6. Parameter regions (h vs x) for dark @Eq. ~36!# and
bright @Eqs. ~26! and ~27!# solitons atd522. The boundariesx1

and x2 are given by Eq.~28!. In the DS region, the darkest are
corresponds to stable behavior, whereas in the remaining par
~numerical! solutions are unstable: in the lightest area~of DS’s!
instability develops very quickly, while in the intermediate area t
DS exists for a much longer time before the onset of the instabi
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that a DS corresponds to a transition between two differ
values of the background cw field. The background fi
takes, generally, complex values@note the real values in th
expressions~37! and~38! are only our choices adopted abo
for convenience#. The quiescent DS’s correspond to a tra

FIG. 7. Evolution of a dark soliton with a superimposed pert
bation. The parameters take the same values as in Fig. 4. The
tinuous line is Re(S), the dashed line is Re(P), and the dash-dotted
line is Re(A). Plots~a!, ~b!, and~c! correspond, to the initial con
ditions (t50), t540, andt580, respectively.
nt
d

-

sition between two background values with phases differ
by p. A principal difference of the DS’s in the present mod
from those in the NLS equation@8# is that here a moving DS
is generated by introducing a phase jumpÞp across the DS.

We have accordingly taken the initial condition for th
system of equations~12! and ~13! as

S1~z,0!5cosS f

2 DSq~z!1 i sinS f

2 DSM , ~50!

P5cosS f

2 D pq~z!1 i sinS f

2 D pM , ~51!

whereSq andPq are the~real! functions corresponding to th
quiescent DS’s,SM andPM are given by Eqs.~37! and~38!
andf is the deviation fromp of the background phase jum
across DS’s. A typical result obtained by means of this mo
fication of the initial state is displayed in Fig. 8: the D
moves at a velocity that is proportional tof. The resulting
form of the moving DS is slightly different from that of th
quiescent soliton. The moving DS appears to be stable o
the entire simulation time. Therefore, we conclude tha
local phase jump different fromp is an effective way to
generate moving DS’s.

VII. FINITE WIDTH OF THE ACTIVE LAYERS

So far, we have assumed that TLS layers are infinite
mally thin. This assumption has allowed us to replace
infinite hierarchy of equations for different Fourier comp
nents of the TLS polarization by Eqs.~12! and ~13!. As
shown in Appendix C, this is due to our requirement that
the TLS’s be located at the antinodes of the quasi stand
electromagnetic wave and thus their polarizations rotate w
the same frequencies. If the envelope of the electromagn
field varies slowly with position, so does the atomic pola
ization. The situation is different if the TLS’s are distribute
over lengths that are comparable to the wavelength: TLS’
different positions within the layer are subject to differe
Rabi frequencies. It is the purpose of this section and App
dix D to estimate the effect of non zero width of the acti

-
on-

FIG. 8. Moving dark soliton: the values of the parameters
the same as in Fig. 4, the background phase-jump parameterf @see
Eqs. ~50! and ~51!# is f52p/4. Dashed line:t50; continuous
line: t5600.
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6144 PRE 60OPATRNÝ, MALOMED, AND KURIZKI
layers which corresponds to more realistic physical sit
tions.

We still assume the width of the active layers to be sm
in comparison to the wavelength. This allows us to expa
the polarization as a Taylor series in the position within
layer, and consider only terms up to the second order. A
aging the polarization over the entire wavelength yields
source term of the Maxwell equations. Following the deriv
tions in Appendixes D and E, we obtain the set of equati
of motion in the forms of

]2S1

]t2
2

]2S1

]z2
52h2S112ihP012

]P0

]t

1g2F ihPC1
]PC

]t
2

]PB

]z G , ~52!

]2S2

]t2
2

]2S2

]z2
52h2S222

]P0

]z

1g2F2 ihPB2
]PC

]z
2

]PB

]t G ~53!

for the field quantities, and

]P0

]t
52 idP01w0S1 , ~54!

]PB

]t
52 idPB12w0S222w1S1 , ~55!

]PC

]t
52 idPC1w2S112w1S2 , ~56!

]w0

]t
52

1

2
S1P0* 1c.c., ~57!

]w1

]t
5

1

2
S2P0* 2

1

4
S1PB* 2c.c., ~58!

]w2

]t
5S1S P0* 2

1

2
PC* D2

1

2
S2PB* 1c.c. ~59!

for the TLS variables. The dimensionless parameterg!1 is
proportional to the active layer width@see Appendix D for
the definition, Eq.~D2!#. The new dynamical quantities ar
defined as

P0[P~z2 j !, ~60!

PB[2
2i

k

]P

]z
uz5z2 j

, ~61!

PC[S 1

k2

]2

]z2
21D PU

z5z2 j

, ~62!

w0[w~z2 j !, ~63!
-

ll
d
e
r-
e
-
s

w1[
i

k

]w

]z U
z5z2 j

, ~64!

w2[S 1

k2

]2

]z2
22D wU

z5z2 j

, ~65!

wherez2 j is the position of the center of the nearest ev
active layer. Equations~52! – ~56! with their complex con-
jugates, and Eqs.~57! – ~59!, form a closed set of 13 inde
pendent equations for the variablesS1 , S2 , P0 , PB , and
PC with their complex conjugates andw0 , w1, andw2, i.e.,
13 real variables together. The equations are parametrize
three real parametersh, d, andg. Note that, forg50, Eqs.
~52!, ~53!, ~54! and~57! are identical to Eqs.~5!, ~6!, ~7! and
~8!, respectively, withP0 standing forP.

Even though the number of equations and variables
now increased, they are still relatively easy to solve num
cally. They realistically express the properties of the syst
over quite long times. This is very important for studying t
properties ofstanding solitons— it would not be true if we
used a Fourier expansion of the polarization as in Ref.@7#.
The problem with the treatment of Ref.@7# is that all the
higher Fourier components would have enough time to
velop, so that it would be impossible to adequately trunc
the system of equations.

We have studied the influence of the layer width on t
standing solutions. It is assumed that the change of the sh
can be expanded by means of the smallness parameteg.
Considering that forg250 the quantitiesS1 and P0 are
given by S15e2 ixt S(z), and P05 ie2 ixt P(z), whereS
andP are real, we expand the quantities of the field and
the TLS’s for finiteg2 as

S15e2 ixt~S1g2S̄!1O~g4!, ~66!

P05 ie2 ixt~P1g2P̄!1O~g4!, ~67!

S25 ie2 ixt~A1g2Ā!1O~g4!, ~68!

PB5e2 ixtB1O~g2!, ~69!

PC5 ie2 ixtC1O~g2!. ~70!

HereS, S̄, P, P̄, A, Ā, B, andC are real functions ofz. In
Appendix F we derive equations for the correcting term
which have been solved numerically.

The validity of this expansion has been checked by dir
simulation of the evolution equations. The magnitude of
correcting terms varies with the system parameters, and
does the time evolution: for some values ofh, d, andx the
set of equations for finite width layers evolve into an irreg
lar pattern, whereas for other valuesthe system remains
stable~e.g., for the parameters of Fig. 4!.

VIII. EXPERIMENTAL CONDITIONS

The effects of TLS dephasing and deexcitation has b
studied by substituting the values2 id2G2t0 for the fre-
quency term2 id in Eqs. ~54!–~56! and the loss terms
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2G1t0(w011) in Eq. ~57!, 2G1w1 in Eq. ~58!, and
2G1(w222) in Eq. ~59!. These modificationshave not in-
fluenced the qualitative behaviorof the solutions during
timestt0,1/G1,2.

Let us now discuss the experimental conditions for
realization of the solitons, using quantum wells embedde
a semiconductor structure with periodically alternating line
index of refraction@12#. We can assume the following va
ues: the average refraction index isn0'3.6, and the wave-
length~in the medium! is l'232 nm, which corresponds t
the angular frequencyvc'2.2631015 s21. Excitons in
quantum wells can, under certain conditions~such as low
densities, and an operating frequency close to an excit
resonance; see Ref.@12# for details! be described as effectiv
TLS’s. We consider their surface density to b
'1010–1011 cm22, which corresponds to a bulk densityr0
'1015–1016 cm23. If we assume that the excitons a
formed by electrons and holes displaced by'1 –10 nm,
then the characteristic absorption timet0 defined in Eq.~4!
is t0'10213–10212 s, and the corresponding absorptio
length isct0 /n0'10–100 mm. Thus the structures show
in Figs. 3, 4, 5, 7, and 8 occupying region of approximat
100 absorption lengths would require a device of the to
width of approximately 1 mm to 1 cm, which corresponds
'103–104 unit cells. The modulation of the refraction inde
can be as high asa1'0.3, so that the parameterh @see Eq.
~10!# can vary from 0 to 102. The unit of the dimensionles
detuningd would represent a 1023–1022 fraction of the car-
rier frequency. The intensities of the applied laser field c
responding toS6'1 are then of the order 106–107 W/cm2.
The dephasing time discussed in@12# is 1/G2'10213 s,
which seems to be the chief limitation of the standing soli
lifetime. Decreasing the dephasing rate appears to be
main experimental challenge.

In Ref. @12# the width of the quantum wells is considere
to be 5–20 nm, which corresponds to the parameterg2 @see
Eq. ~D3!# in the range 1023–231022. In our simulations,
taking the largest of these values and the parameters a
Fig. 4, i.e.,h50.6, d522, andx50.25, we have observe
the time evolution of the system of equations~52!–~59!. As
the initial condition we have taken both the DS solution c
responding to the zero width of the active layers, and the
solution including the finite width correction as derived
Appendix F. In both cases the evolution was quite regu
over the observed timet'50, with the corrected solution
@Eqs. ~66!–~70!# remaining virtually unchanged, and th
zero-width solution@quantitiesS,P, and A given by Eqs.
~39!, ~22!, and~34!# starting to change aftert'10.

IX. DISCUSSION

An optical medium combining a periodic refractive-inde
grating a periodic set of thin active layers~consisting of two-
level systems resonantly interacting with the field! has been
investigated. Previously, it was demonstrated that this sys
supports a vast family of bright gap solitons@4,5#. In this
work, we have shown that the system can support, depen
on the initial conditions, stable dark and bright solitons
thesame values of the parameters, which is a unique feature
for nonlinear optical media. We have found zero-veloc
dark solitons in an analytical form, and traveling dark so
e
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r

ic

y
l

-

n
he

in

-
S

r

m

ng
r

-

tons, with a constant phase difference (Þp) of the back-
ground amplitudes. The latter property is a major differen
from the dark solitons of the NLS equation, whose motion
supported by giving the background a nonzero wave num
Depending on the values of the parameters, the freque
band of the quiescent dark solitons coexists with one or
bands of the stable bright ones, without an overlap. Dir
numerical simulations demonstrate that some dark-sol
solutions are stable against arbitrary small perturbatio
whereas others are unstable, when they are close to
‘‘dangerous’’ boundaries of their existence domain.

We have discussed the possibilities of experimental re
ization of such standing solitons in a semiconductor Bra
structure with quantum wells as active layers. It seems
the relatively short dephasing time is the most import
limitation on their realization. It has been shown that f
some values of the parameters the system evolution is
weakly influenced by the non zero width of the active laye
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APPENDIX A: BLOCH EQUATIONS

We start with the Hamiltonian for a single atom in th
field,

Ĥ5
\v0

2
ŵ2E•d̂, ~A1!

where

ŵ[ue&^eu2ug&^gu, ~A2!

where v0 is the atomic transition frequency,ug& and ue&
denote the atomic ground and excited states, respectivelE

is the electric field vector, andd̂ is the atomic dipole momen
operator. We take projection on the field direction so th

E•d̂5Ed̂, where

d̂[
m

2
~ P̂1 P̂†!, ~A3!

m being the dipole moment matrix element~chosen real! and

P̂[2ug&^eu. ~A4!

We express the electric field in a given point by means of
Rabi frequencyV as

E5
\

2m
~Ve2 ivct1V* eivct!. ~A5!

Using the Heisenberg equation of motiondÂ/dt51/(i\)

@Â,Ĥ#, defining dimensionlessc numbersP andw as

P[ ieivct^P̂&, ~A6!

w[^ŵ&, ~A7!
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and using the rotating wave approximation, we arrive at
Bloch equations

Ṗ52 i ~v02vc!P1Vw, ~A8!

ẇ52 1
2 ~VP* 1V* P!. ~A9!

APPENDIX B: EQUATIONS OF MOTION OF THE FIELD

We start with the Maxwell equation~one-dimensional,
one component of the field vector!:

c2
]2E

]z2
2n2~z!

]2E

]t2
5

]2Pnl

]t2
, ~B1!

with the refraction indexn modulated as in Eq.~1!, E being
the electric field component, andPnl the nonlinear polariza-
tion. We use the substitution

E[@EF~z,t !eikcz1EB~z,t !e2 ikcz#e2 ivct1c.c., ~B2!

with vc satisfying the dispersion relationn0vc5kcc andEF
andEB denoting the forward and the backward propagat
field components. We work with the slowly varying env
lope approximation assuming

U]2EB,F

]z2 U!Ukc

]EB,F

]z U, ~B3!

U]2EB,F

]t2 U!Uvc

]EB,F

]t U. ~B4!

Substituting Eq.~B2! into Eq. ~B1!, using Eqs.~B3! and
~B4!, multiplying by ei (7kcz1vct) and averaging over the
wavelengthl52p/kc and the periodT52p/vc , we obtain

c

n0

]EF

]z
1

]EF

]t
5

ia1vc

4
EB1

\

2mt0
2

P2 , ~B5!

2
c

n0

]EB

]z
1

]EB

]t
5

ia1vc

4
EF1

\

2mt0
2

P1 , ~B6!

where we define

P6[2
imt0

2

\vcn0
2 K ]2Pnl

]t2
ei (6kcz1vct)L

l,T

, ~B7!

with t0 an arbitrary constant~later we take advantage oft0
defined as in Eq.~4!!, and the averaging given as

^•••&l,T[
1

lTEl
E

T
•••dt dz. ~B8!

We express the field componentsEF,B by means of the di-
mensionless quantitiesS6 defined as@cf. Eqs.~3! and~B2!#

EF,B5
\

4mt0
~S16S2!, ~B9!
e

g

and use the expressions for dimensionless positionz and
time t given in Eq. ~9! and the parameterh given in Eq.
~10!; differentiating the equations again with respect toz and
t and using some algebra, we arrive at

]2S1

]t2
2

]2S1

]z2
52h2S11 ih~P11P2!1

]

]t
~P11P2!

1
]

]z
~P12P2! ~B10!

and

]2S2

]t2
2

]2S2

]z2
52h2S21 ih~P12P2!2

]

]t
~P12P2!

2
]

]z
~P11P2!. ~B11!

APPENDIX C: NONLINEAR POLARIZATION
AVERAGING: ZERO WIDTH OF TLS LAYERS

The polarizationPnl in a given point can be expressed
the dipole moment density

Pnl54p%^d&52p%m~^P̂&1^P̂†&!

522p i%m~Pe2 ivct2P* eivct!, ~C1!

where% is the number of the two-level atoms in a unit vo
ume. Neglecting the time derivatives ofP with respect to
those ofe2 ivct, we can write, for the polarization derivative

]2Pnl

]t2
52p ivc

2%m~Pe2 ivct2P* eivct!, ~C2!

so thatP6 on the right-hand side of Eqs.~B5! and~B6! read
as

P65
2pvc

2m2t0
2

\n0
2 ^%Pe6 ikcz&l . ~C3!

Let us now assume that the density of the atoms% is con-
centrated in zero-width layers located atzj , such that

eikcz2 j51, eikcz2 j 11521, ~C4!

i.e., it is described by

%5
%0l

2 (
j

d~z2zj !, ~C5!

where%0 is the bulk density averaged over the whole wav
length. We also assume that the space dependence ofP is to
a good approximation antiperiodic with respect tol/2, i.e.,
P(z1l/2)'2P(x). This is in agreement with the approx
mate antiperiodicity of the electric field withl/2. Denoting
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by P0 the values ofP in 2 j th layers~the values in 2j 11st
layers being2P0), we obtain the spatial average in Eq.~C3!
as

P65
2pvcm

2%0t0
2

\n0
2

P0 ; ~C6!

note thatP15P2 is the consequence of zero width of th
layers. Defining the timet0 as in Eq. ~4!, we obtain the
simple relation

P65P0 . ~C7!

Using this expression in Eqs.~B10! and~B11!, we obtain the
equations of motion~5! and ~6! ~note that the subscript 0 o
P0 has been omitted in these equations for simplicity!. The
equations for the polarizationP0 and inversionw0 in the
2 j th layers can be obtained from Eqs.~A8! and ~A9! by
substituting forV @combine Eq.~3! and ~A5!#,

V5t0
21~S1coskcz1 iS2sinkcz!, ~C8!

and applying Eq.~C4! for the 2j th layers positions. Express
ing the detuning as in Eq.~9!, we obtain the equations o
motion ~7! and ~8!.

APPENDIX D: NONLINEAR POLARIZATION
AVERAGING: FINITE WIDTH OF TLS LAYERS

Let us assume that the TLS density is given, instead
Eq. ~C5!, by

%5
%0l

2
f ~x!, ~D1!

where%0 is the density averaged over the whole wavelen
and the functionf (z) has the properties

f ~z!>0, f ~z1l/2!5 f ~z!,

E
zj 2(l/4)

zj 1(l/4)

f ~z!dz51,

E
zj 2(l/4)

zj 1(l/4)

z f~z!dz50,

E
zj 2(l/4)

zj 1(l/4)

z2f ~z!dz5
g2

k2
, ~D2!

where g!1 is a dimensionless parameter describing
thickness of the layers. Note that for a rectangularf of the
width D this parameter is

g25
p2D2

3l2
. ~D3!

To calculatê %Pe6 ikcz&l of Eq. ~C3!, we expand the spatia
dependence ofP and exp(6ikcz) in Taylor series,
f

h

e

^%Pe6 ikcz&l5e6 ikcz2 j%0E
z2 j 2(l/4)

z2 j 1(l/4)

f ~z!

3FP01P08~z2z2 j !1
1

2
P09~z2z2 j !

21•••G
3F16 ikc~z2z2 j !2

kc
2

2
~z2z2 j !

21•••Gdz,

~D4!

whereP0 , P08 , andP09 refer to the value ofP, and its spatial
first and second derivatives atz5z2 j . Neglecting higher than
quadratic terms and using the properties off (z) @Eq. ~D2!#,
we arrive at

^%Pe6 ikcz&l'%0F P01g2S P09

2k2
6

iP08

k
2

P0

2 D G , ~D5!

so that

P6'P01g2S P09

2k2
6

iP08

k
2

P0

2 D . ~D6!

Using these values in Eq.~C3!, substituting into Eqs.~B10!
and~B11!, and considering the definitions~60!–~62!, we ob-
tain the field equations of motion in the form of Eqs.~52!
and ~53!.

APPENDIX E: EQUATIONS OF MOTION FOR ATOMIC
PARAMETERS IN FINITE-WIDTH TLS LAYERS

We use Eq.~C8! for V in ~A8! and ~A9! to write the
Bloch equations in a pointz as

]P

]t
52 idP1@cos~kcz!S11 i sin~kcz!S2#w, ~E1!

]w

]t
52

1

2
@cos~kcz!S11 i sin~kcz!S2#P* 1c.c. ~E2!

Taking into account that the spatial derivatives ofS6 are
much smaller than those of sin(kcz) and cos(kcz), and calcu-
lating the first and second derivatives in the pointz5z2 j , we
obtain

]P0

]t
52 idP01S1w0 , ~E3!

]P08

]t
52 idP081 ikcS2w01S1w08 , ~E4!

]P09

]t
52 idP092kc

2S1w012ikcS2w081S1w09 ~E5!

and

]w0

]t
52

1

2
S1P0* 1c.c., ~E6!
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]w08

]t
52

ikc

2
S2P0* 2

1

2
S1P08* 1c.c., ~E7!

]w09

]t
5

kc
2

2
S1P0* 2 ikcS2P08* 2

1

2
S1P09* 1c.c. ~E8!

Using definitions~60!–~65!, we arrive at the equations o
motion ~54!–~59!.

APPENDIX F: CORRECTIONS TO STANDING SOLITON
SOLUTIONS WITH FINITE-WIDTH TLS LAYERS

Let us expressw0 up to the second order, andw1 andw2
up to the zeroth order ing. We start from the requirement

w2~z!1P~z!P* ~z!51, ~F1!

expandw andP in a Taylor series inz2 j ,

w~z!5w01w08~z2z2 j !1
w09

2
~z2z2 j !

21•••, ~F2!

P~z!5P01P08~z2z2 j !1
P09

2
~z2z2 j !

21•••, ~F3!

and compare the terms with equal powers of (z2z2 j ), then
use Eqs.~60!–~65! to change fromw08 , w09 , P08 , andP09 to
w1 , w2 , PC , and PB , and substitute forP0 , PC , and PB
from ~67!, ~69!, and~70!. We thus obtain

w052A12P 21
PP̄

A12P 2
g21O~g4!, ~F4!

w15 i
PB

2A12P 2
1O~g2!, ~F5!

w25
81B 2212P 214P 414PC~12P 2!

4~12P 2!3/2
1O~g2!.

~F6!

Substituting the above results into Eqs.~55! and~69!, we
obtain
.

n

hy
,

B5
2A~12P 2!3/2

~x2d!
, ~F7!

substituting into Eqs.~56! and ~70!, we obtain

C52P~22P 2!2
3P~12P 2!2

~x2d!2
A 2. ~F8!

These results can be used to calculate the corrections to

field variablesS̄, andĀ and the correction of the polarizatio

P̄. Using Eq.~54! and comparing theg2 terms, we obtain

P̄52
~12P 2!3/2

~x2d!
S̄, ~F9!

and from Eq.~52! we obtain the differential equation

d2S̄
dz2

1~x22h2!S̄12~x2h!P̄52~x2h!C1
dB
dz

.

~F10!

The functions on the right-hand side of Eq.~F10! are known;

substituting Eq.~F9! for P̄ we obtain, an inhomogeneou

second order equation forS̄. We have solved this equatio
numerically, discretizing the functions and using a mat
inversion. Next using these results and substituting into

~53!, we obtain a differential equation forĀ:

d2Ā
dz2

1~x22h2!Ā52
dP̄
dz

1~h1d!B

1
dC
dz

22AA12P 22
PAS

A12P 2
.

~F11!

This is an inhomogeneous equation with constant coe
cients. The right-hand side functions become known as s

as we calculateP̄.
ys.
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